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Comment is made on the paper by Hawthorne, F. C. [Acta Cryst. (1974). A30, 603-604]. 

In the procedure outlined by Hawthorne (1974) for the 
refinement of crystal structure by the least-squares method 
with intensities from merohedrally twinned crystals, the 
structure factors calculated for the two crystals in the twin 
are summed. By introducing linear constraints in the least- 
squares refinement program, as stated by the author, the 
newly generated parameters are used to calculate additional 
structure-factor components to be added to the original. 
But, instead, it is the intensities calculated for the two 

crystals in the twin which have to be added to get the total 
intensity. The program has to be rewritten to minimize 
w{lo-(11 + 12)} 2 where Io is the observed intensity, 11 and 12 
are the calculated intensities due to the two crystals in the 
twin and w is the weight assigned for each observed inten- 
sity. 
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Fourier phase refinement for macromolecular crystal structures can be accomplished using electron density 
maps sampled at intervals of half the minimum interplanar spacing for which diffraction data have been 
measured in that direction. Order-of-magnitude economy in computation is thus gained as compared to use 
of customary sampling rates. 

Fourier phase refinement is a much discussed method for 
improvement of the crystallographic description of large 
biological molecules [see, e.g., Barrett & Zwick (1971) and 
references cited therein]. Use of this method certainly will 
become more widespread as the real cost of computing 
decreases and computer programs based on Fast Fourier 
Transform algorithims become freely available. Notwith- 
standing the present speed and efficiency of Fourier inver- 
sion, repetitive calculations for crystals with large asymme- 
tric units still require a most substantial investment of 
computational resources. In the interest of further economy 
we have examined the proposition that the sampling cri- 
terion of Lipson & Cochran (1966) must be satisfied in 
Fourier phase-refinement calculations, as implied by 
Barrett & Zwick (1971). 

The conceptual cornerstone of these refinement calcula- 
tions is the idea that a mediocre electron density map (i.e. a 
map based on experimental structure amplitudes and estim- 
ated phases) can be modified in a reasonable way to 

provide a density function rather more similar to the true 
density function than was the original (Hoppe & Gassmann, 
1968). This being so, it is a simple matter to transform the 
modified density function and obtain improved phases. This 
concept was first presented by Sayre (1952) who gave the 
relationships 

0 (0~02 (0 ,  (la) 
and consequently, 

Fn= 1 0n ~, FkFn-k. (lb) 
V K 

where V is the unit cell volume and 0 is a shape function. 
The development of these equations has been directed 
principally toward use of the latter in ab initio estimation 
of phases for crystal structures of moderate complexity. 
In fact, (lb) and similar equations have been so successful 
in application that many crystallographers have come to 
think of (lb) as a fundamental relationship among structure 

Table 1. Figures of merit and convergence during phase refinement 

All numbers are given in pairs; the upper is for case I, the lower for case II as described in the text. 

Average change in 
phase angle (o). 
Rt  

Average error in 
phase angle (°)* 

Iteration 
0 1 2 3 4 

I - -  32 (37) 17 (20) 6 (8) 2 (4) 
II - -  32 (37) 16 (19) 5 (8) 2 (4) 
I - -  0.28 0.21 0.19 0.19 
II - -  0.26 0.21 0.21 0.22 
I 46 (46) 26 (32) 17 (24) 15 (22) 15 (22) 
II 46 (46) 24 (29) 16 (23) 16 (23) 17 (24) 

* Modulus-weighted averages are given; the corresponding unweighted averages are in parentheses. 
t R is calculated from R= ~[IFexpl- IFcatoll/ZlFexpl. 



S H O R T  C O M M U N I C A T I O N S  389 

factors while relegating (la)  to the status of but an inter- 
esting corollary. 

Let us turn that about and focus on the following form of 
( la):  

Q(r) =f[0exp(r)], (2) 

w h e r e f m a y  be any reasonable function that will change an 
experimental electron density map into a better representa- 
tion of the true structure. Suppose that f(Qexp) gives an 
accurate representation of the correct structure at experi- 
mental resolution. In this case it is clear that to obtain 
accurate structure factors upon Fourier inversion of e, the 
grid upon which it is represented need be no finer than 
required by Shannon's  (1949) sampling theorem. On the 
other hand, the sampling rate in e would have to be doubled 
(Gold & Rader, 1969) in each direction to obtain an over- 
lap-free transform of e(r)= Q2xp(r). 

Although we have no interest in transforming e(r)= 
e2xp(r), we can see that the need for finer sampling in this 
case arises from the (artificial) increase of resolution and 
sharpness in direct space. Thus informed, we consider that 
an efficient modification function may increase resolution 
and sharpness at low density levels, but must leave the 
highest levels essentially unchanged. It may be possible 
then, to obtain from the minimally sampled density func- 
tion, structure factors effectively free from overlap. Alter- 
natively, in terms of Sayre's (1951) hypothetical atoms, an 
ideally modified density function, among other things, will 
be comparable to a collection of hypothetical scattering 
centers whose transforms have about the same range in 
reciprocal space as do the experimental data. 

For an empirical test, an artificial structure of 17 single- 
bonded carbon atoms was constructed in space group P1 
with a = b = c =  16 A, and ~ = f l = ) , = 9 0  °. The atoms were 
assigned isotropic thermal parameters of 10 ,A2 and 
theoretical structure factors, IFtl exp ifot, were calculated to 
a minimum interplanar spacing of 2.0 ,~. To give this test 
some likeness of a protein problem, fixed random errors 
were introduced into IF~[ to give IFexpl such that ~][F~I- 
IFe~pll/~lF, l=O'12; similarly, errors were added to f0t to 
give starting phases in error by an average of 46"4 ° . With 
eexp always scaled to have a maximum value of 1.0 e /~-a ,  
the following scheme of modification was used. 

{ 302xp(r)-2Oaxp(r); Qexp > 0 (3) 
Qcatc(r) = 0; Qexp <__0 

and an updated eoxp is the transform of IF,~ol exp i~,¢at¢. 
Parallel procedures were carried through using two 

sampling rates in e. Case I was based on maps of 16 divi- 
sions per cell edge to meet the Shannon (1949) criterion, 
and case II was based on maps of 32 divisions per cell edge. 
Improved phases were developed in four iterations for both 
cases and the results are given in Table 1. 

It is clear that case II does not give better results. More- 
over, the slightly better results for case I are not factitious 
but arise from the inability of direct-space phase-refinement 
methods to account properly for series-termination error. 
In particular, certain areas of any experimental electron 
density map must be negative because of series-termination 
effects, yet they are set to some non-negative value. The 
situation is clear if we consider the 3 function at the origin, 
its discrete transform truncated at order 4, then transformed 
onto grids of eight per period and 16 per period. In the first 
instance, the density function is positive at the origin and 
zero elsewhere. In the second, the density function will 

quite correctly show negative regions; this effect can be 
minimized only through use of a grid of minimal fineness. 
Of course, for a real protein structure, series-termination 
errors are trifling at worst  (if we use Fh rather than Eh), so 
we shall base our preference for case I solely on the fact that 
it requires less calculation by an order of magnitude than 
does case II. 

Evidently Barrett & Zwick (1971) were wrong to imply 
that the costly sampling criterion of Lipson & Cochran 
(1966) must generally be observed in Fourier phase-refine- 
ment calculations.* A well chosen density-modification 
function allows these calculations to be carried out quite 
satisfactorily using maps based on a grid of minimal 
fineness. 

Our practical interest is in the structure of staphylococcal 
nuclease (Arnone et al., 1971) and phase extension and 
refinement for a 1"5 A (minimum interplanar spacing) 
data set. We estimate that for this case, the outlined calcula- 
tions, as based on Shannon's (1949) criterion, will require 
80 min on an IBM 360/65 computer at a total cost of 
$160. To double the sampling rate in each direction would 
increase the required time by 560 minutes and the cost by 
$1120. 

The computer programs used for this work were modified 
versions of the programs by Hubbard, Quicksall & 
Jacobson (1971). This work was supported in part by a 
grant of the National Institute of General Medical Sciences. 

* Lipson & Cochran (1966) state that 'the number of 
points at which the electron density should be sampled in any 
one direction should be about three times the highest index 
observed in that direction' (our italics). They also state, pari 
passu, that 'it is necessary to ensure that the various sets of 
spectra do not overlap - that is, for the highest index q ob- 
served, the (n -q ) th  and higher orders should be negligible'. 
It is essential to recognize that this latter general requirement 
leads to the numerical rule of thumb first quoted only in the 
context in which it is given, that is, in the context of normal 
high-resolution studies of small molecules. In a broad sense 
then, it would be correct to say that the sampling criterion of 
Lipson & Cochran (1966) always must be observed in phase- 
refinement calculations, but in the same broad sense Barrett & 
Zwick's (1971) statement 'It is important to note that 0e must 
be sampled more finely than its transform if the inverse Fourier 
operation is to yield accurate Eh's' is incorrect. Let it be ob- 
served that Lipson & Cochran's (1966) general requirement is, 
in effect, a restatement of Shannon's (1949) sampling theorem. 
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